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Learning from “Big Data” 

 Big size (         and/or           )

 Challenges

 Incomplete

 Noise and outliers

 Fast streaming

2

 Opportunities in key tasks 

 Dimensionality reduction

 Online and robust

regression, classification  

and clustering

 Denoising and imputation
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Outline

 Scalable kernel-based learning

 Sparsity-aware low-rank approximation of lifted data

 Theoretical guarantees and test results

 Online subspace tracking

 Affordable memory and computation

 Future directions
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Linear or nonlinear functions for learning?   

e.g.,

 Regression or classification: Given                        , find     

 Memory requirement , and  complexity  

 Pre-select kernel (inner product) function 

 RKHS basis expansion  

 Lift via nonlinear map                                       to linear 

 Kernel-based nonparametric ridge regression 
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Prior art

 Kernel matrix approximation

 Tractable by leveraging low-rank attribute (in dual domain) 

o Nystrom approximation [Williamson-Seeger’00, Si et al. ‘14, Wang et al. ‘14]

o Incomplete Cholesky decomposition [Fine-Scheinberg’01]

 Random feature approximation

 Kernel approximation via feature approximation

o Random sampling and kernel matrix factorization [Rahimi-Recht’08, Zhang et al.’11] 

 Functional gradient descent

 Tractable gradient descent (batch form in primal domain)   

o Pegasus [Shaleve-Schwart et al.’11]; Norma [Kivinen et al.’04]; [Wang et al. ’12, Lu et al. ‘16]

 Reduced-dimensionality features

 Tractability through online extraction of low-dimensional features

o Online (kernel) PCA [Honnein’012]; linear subspace tracking [Mardani et al.’15]
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Low-rank approximation of mapped features

 Low-rank approximation

S2. Update features                  while fixing subspace

S1. Update virtual subspace        while fixing feature vectors 

 Alternating minimization

 Nonlinear mapping
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Sparsity-aware low-rank approximation

 Row-sparsity of                   fewer “basis vectors” for

 BCD

S1. Update                 with         fixed

Group shrinkage

S2. Update        with                  fixed

 Solvers

i. BCD-Exact: Exact minimization- more expensive, larger descent

ii. BCD-PG: Proximal gradient-based update, inexpensive, smaller descent

F. Sheikholeslami and G. B. Giannakis, "Scalable Kernel-based Learning via Low-rank Approximation of 

Lifted Data," Proc. of 55th Allerton Conf. on Comm., Control, and Computing, Oct. 4-6, 2017.
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Convergence and generalization bounds 

Proposition 1 Sequences generated by BCD-Ex and BCD-PG

iterations converge to a stationary point.

Proposition 2. If , and                  , then for             it holds wp > 

 Generalization: performance guarantees on unseen data

 Equivalent optimization 

 Define

F. Sheikholeslami and G. B. Giannakis, "Scalable Kernel-based Learning via Low-rank Approximation of 

Lifted Data," Proc. Allerton, 2017.
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Linear regression!

Linearized kernel regression and classification

Proposition 3. If iid with                  kernel matrix

can be approximated as    ,  and wp >

 Kernel matrix approximation

 Bounds also on support vector machines for regression and classification 

F. Sheikholeslami, D. K. Berberidis, and G. B. Giannakis, "Kernel-based Low-rank

Feature Extraction on a Budget for Big Data Streams,“ arxiv:1601.07947.
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Simulation tests

F. Sheikholeslami and G. B. Giannakis, "Scalable Kernel-based Learning via Low-rank Approximation of Lifted Data," Proc. Allerton Conf. 2017.

IJCNN DatasetAdult Dataset Slice Dataset

N=53,500 , d= 384           N=32,650, d= 123          N=140,230 , d= 22          

Datasets available at UCI repository: http://archive.ics.uci.edu/ml/datasets.html
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Online function approximation on a budget

S1. Find projection coefficients

S2. Update subspace factor (via stochastic gradient descent)

 Iteration          :             and                 available 

 If budget exceeded, remove the row of A with minimum    -norm 

 Low-rank (r) subspace tracking [Mardani-Mateos-GG’14] here on lifted data

 Censoring can mitigate curse of dimensionality as n

Rank surrogate 
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F. Sheikholeslami, D. K. Berberidis, and G. B. Giannakis, "Kernel-based Low-rank Feature Extraction on 

a Budget for Big Data Streams," arxiv:1601.07947.
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OK-FEB with linear classification and regression

 Slice dataset (regression)  Year dataset (regression)

 N=53,500 , d= 384, r=10, B=15  N=463,700 , d= 90, r=10, B=15

 OK-FEB LSVM outperforms budgeted K-SVM/SVR variants in classification/regression
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Tracking dynamic subspaces

 Synthetic dataset

 Recency-aware removal rule

 Parameter     trades off tracking for precision

 Recency factor

 Removal rule

• Associate factor      to the i-th SV in the budget

• Decay       with inclusion of a new SV, 

and                 drawn from two subspaces

 Smaller values of      provide faster tracking, while larger values increase fitting precision

 Successful use of affordable budget for nonlinear subspace tracking
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Online physical activity tracking

 Subjects asked to do various physical activities

 d =13 quantities measured from chest, 

ankle and wrist via wireless MUs

F. Sheikholeslami, D. K. Berberidis, and G. B. Giannakis, "Kernel-based Low-rank Feature Extraction 

on a Budget for Big Data Streams,“ arxiv:1601.07947.

 Gaussian kernel; and

Average LS-fit
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Summary

 Sparsity-aware low-rank approximation of lifted data

 Theoretical guarantees and test results

 Kernel-based learning

 Nuclear norm regularization for online approximation

 Budget enforcement for affordable memory and computation

 Future directions

 Nonlinear feature extraction for canonical correlation analysis

 Kernel-based feature extraction over 2-D signals on networks

Thank you!


