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‘ Taxonomy of learning over graphs
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‘Outline

% Taxonomy of learning over graphs

s Graph learning algorithms inspired by language models

v' Word2vec (Skip-gram)
v' DeepWalk
v" Node2vec
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‘ Graph Representation

O For machine learning tasks, the first step is to represent the network
» Such as adjacency matrix

L Feature extraction (node embedding)

» Transform the adjacency matrix into a lower dimensional latent representation

» Use deep learning techniques developed for language modeling
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Language modeling

O Representation learning of words from documents

O The learned representations capture inherent structure

> e.g., learn mapping ¢ :v eV — RIVIX4 such that
|¢(rose) — ¢(daisy)|| < [[¢(rose) — ¢(tiger)||

» Recent approaches are based on word co-occurrence

> Word2vec

v' Continuous-bag-of-words

v' Skip-gram
v GloVe




Word co-occurance maximization

 Consider source text “The quick brown fox jumps over the lazy dog.”

O Skip-gram: with one word, predict surrounding words
> Max. the likelihood of context words(wi—y, ..., Wi—1,Wiy1, ..., Wepm)given center word wy

I 1 1
T Zt:l IOgP((me, vy We— 1, W15 +ey thrm)'wt) = T Z?:l Zj:—m,..,m;j-—,éo IOg P(wt+j|wf)

Source Text Training
Samples

-quick brown [fox Jjumps over the lazy dog. — (the, quick)
(the, brown)

The brown (fox|jumps over the lazy dog. — (quick, the)

(quick, brown)
(quick, fox)

The quick-fox jumps|over the lazy dog. — (brown, the)

(brown, quick)
(brown, fox)
(brown, jumps)

The|quick| brown - Jjumps|over|the lazy dog. — (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

» Window-size m is usually 5-10

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient estimation of word representations in vector
space." arXiv preprint arXiv:1301.3781 (2013).



Skipgram model

O How to model log P(w¢4 |w) ?

O Every word has 2 vectors for representation

> Vu :when w is the center word

» U, :when wis the outside word (context word)

exp(uwtﬂ V)
> €XP(Wyr Vi, )

» Softmax function P(wyqj|we) =

Output weights for “car”

softmax
Word vector for “ants” 4 . . Uabandon
3 Probability that if you
_ X .§i :> = randomly pick a word
300 features § nearby “ants”, that it is “car”
9 _ Uzone
Uabandon

Q Entire parameter set 6 € R2?V Uy
one




‘ Neural network model

O Consider a vocabulary size of |[V| = 10,000 and set d=300

O Shallow (one hidden layer) neural network model

Hidden Layer : Word Vector
Weight Matrix Lookup Table!

300 features

300 neurons

Probability that the word at a

X = g Y1 randomly chosen, nearby
(o) ition is “abandon”

\ — position is “al
x| @ —/"‘1O [ @y
A 1" in the position s a __/i’z - ° A
. . . /. - .. “ability
- K .
L) - ° -~ - .

corresponding to the —»
word “ants”

10,000 words

U300 10,000 ‘ ® i

10,000 words

[ * [Vio,000x300 |

5] 3 * gl
9/ \*hde/ \"
=

@y . “zone"

%

Input Layer Hidden Layer _ Output Layer

» Neural network input: one-hot vector corresponding to the “center word” of interest

D . 1
> Maximization objective J(0) = > 1oy Ji(6) Final representation

1T
> Gradient descent update rule 0" = °'! —1v.J(6°7) e=U +V

v’ Stochastic gradient descent: randomly pick sample t 0" = 0°'h — v J,(6°'%)




‘ Algorithmic tweaks

L Word pairs and phrases

» Find words that appear frequently together, e.g., “New York” and “Boston Globe”.

» “Phrase learning” is performed beforehand

0 Subsampling of frequent words

» Counter the imbalance between rare and frequent words

» Sample word w; w/ frequency f(w;) W. p. P(w;)




Algorithmic tweaks- negative sampling

O Typically extremely large vocabulary set (|V| ~ 10° — 107)

. . . exp (U, Vi,)
O Expensive to calculate the gradient of P(wolwe) = S exp(ty V)

> All |V|d weights in the second layer of the NN (U) are involved and updated!

= Recall that the output of the network is a one-hot vector.

» Thatis, one outputis 1, and all of the other millions of output neurons are 0.

» Randomly select just a small number of “negative” words (say 5) to update the weights for.
= “negative” words are the ones for which we want the network to outputa 0

= “positive” word is the word for which the network outputs 1

» Approximate the normalizer via few “negative samples”

> Probabilistic selection of negative samples ~ P(w:) = ~

10



| Word analogies

O Nearest words to frog

. frogs

. toad

. litoria

. leptodactylidae
.rana

. lizard

. eleutherodactylus

N ok W

O Test for linear relationships

(¢b_'¢a*_¢cyr¢m

abc? _— d = arg max
X

I|¢b - ¢a + ¢CH

man:woman :: king:?

» Example
+ king [0.300.70]

man [0.200.20]
+ woman [0.600.30]

queen [0.700.80]

rana

eleutherodactylus

queen
0.75 . king
05
woman
0.25 man
0
0 0.25 05 0.75
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‘ Test results

O Semantic-Syntactic Word Relationship test set

» Five types of semantic questions
» Nine types of syntactic questions

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars

| Plural verbs work works speak speaks

O Accuracy on (subset of) the Semantic-Syntactic Word Relationship test set.

Dimensionality / Training words || 24M | 49M | 98M | 196M | 391M | 783M
50 13.4 | 15.7 | 18.6 | 19.1 22.5 23.2
100 194 | 23.1 | 27.8 | 28.7 | 334 | 322
300 2321292 | 353 | 386 | 437 | 459
600 24.0 | 30.1 | 36.5 | 408 | 46.6 | 504

O Comparison of architectures using models trained on the same data, with d=640

Model Semantic-Syntactic Word Relationship test set MSR Word Relatedness
Architecture || Semantic Accuracy [%] | Syntactic Accuracy [%] Test Set [20]
RNNLM 9 36 35
NNLM 23 53 47
CBOW 24 64 61
Skip-gram 55 59 56

Tomas Mikolov, llya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean, "Distributed representations of words and phrases

and their compositionality,” In Advances in neural information processing systems, pp. 3111-3119, Lake Tahoe, USA, 2013.
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From language modeling to graphs

O Correspondence
» Words <--> Nodes
» Sentences <--> Node sequences

L Generating node sequences

» Using random walks
o short random walks = sentences

O Connection
» Vertex frequency in random walks on scale-free graphs follows a power law.
» Words frequency in a natural language corpus follows a power law.

13



‘ Deepwalk

1. Input: Graph N
2 Random walk W,, BV — vs— VUi — Us— Ul U4 Usl — Ugg
errJ.. = 4 )
3. Representation mapping ;] -
: ¢
:0.6 . » . &8 .‘
4. Output: Representation WLt e

L L ' L L ' ' L
-0 -05 oo 0.5 1.0 1.5 20 25

5. Representation-based inference such as classification, clustering, etc.

Bryan Perozzi,, Rami Al-Rfou, and Steven Skiena, “Deepwalk: Online learning of social representations,” Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data mining. ACM, New York, NY, Aug. 2014. 14



Random walks

2= if (v,z) € E

% Probability of going from node v to node x Ple;=zeioa=v) = {(} otherwise

» Common choice Tor = Wor

% 2nd order random walk [Grover et al. 2016)]

» Consider a random walk that just traversed edge (t, v) and now resides at node v

» Probability of going to node x is set to Toz ~ Qpg(t, T) Wy

Qpq(t,x) ~ <1 if dpp =1
1/q it dy =2

= p: Return parameter
= (: In-out parameter

Aditya Grover and Jure Leskovec. "node2vec: Scalable feature learning for networks.”" Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data mining. ACM, San Francisco, CA, Aug. 2016.

15



‘ Test

1 Datasets

U Performance vs. ratio of available labels

Micro-F; score

Macro-F, score
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‘ Roadmap

* Graph convolutional networks

)

L)




Learning over featured networks

% Consider a graph(known Adj.) of partly labeled N nodes w/ features X € R¥*#

% Common practice

minimize L= Lo+ Az , €.9.learn function f(.), w/ Ly = fitting term

Ereg = Zi,j A%JHf(X%> - f(Xj)||2

s “Graph convolutional” approach

» Use graph structure directly via a neural network model f(X, A)

18



Graph convolutional networks

J Model

» Neural network of depth L, with X ¢ RV*¥" as input

» H' € RY*P output matrix of the I-th layer

HI+! = 0(13—1/2Af)—1/2H(1)W(l))
e A=A+Iy D;=Y,4; ,H?9=X  o(): activation fun.

0 Semi-supervised node classification

» Given one-hot labels Y of size Ny x K for N; nodes

N, K
Woin ,,,; ; Yo In Zpi Z = f(X,A) = softmax (A Relu(AXW(©) W(l))

» No explicit graph-based regularization

Thomas N. Kipf and Max Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” ICLR, Toulon, France, April 2017.
19



Test results

[ Datasets
Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001

O Classification accuracy (in percent)

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 58.1
ICA [18] 69.1 75.1 73.9 23.1

Planetoid* [29] 64.7 (26s)  75.7(13s) 77.2(25s) 61.9(185s)
GCOCN (this paper)  70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

GCN (rand. splits) 67.9+0.5 80.1+0.5 789+0.7 584+1.7




Semisupervised node embedding via GCN

O Can be modified to serve as a feature extractor for nodes in a graph

Z — f(X,A) = softmax (A Tanh (A Tanh(AXW©) W(1>)w(2>) 1/

O Train model via cross-entropy minimization on the labeled nodes /;f?-s-

yd

O The hidden layer output is interpreted as the embedding vector

0 Example: Karate club (with no features)
N =34 N
Dy =4 A "
Dy =2 ’
D3 =14
X =134

21



‘ Effects of model depth

L ResNet models for better performance on deep neural networks
HI+1 — U(ﬁ_1/2Aﬁ_l/2H(l)W(Z)) +HO

U Performance

0.90 Citeseer Cora Pubmed
' R 095 ~ -~ . & . e e o] 0.88f = a—— _
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0.80 0.85} MR'_H
Q) 0.84}
0.75 0.80} Y
== > v R =
® @ v @ 0.821
50.70 5 0.75} W15
v 3 J N g
< [} < A <<
0.65 - 0.70/ ) 0.80
0.60) 77T Train 4 0.651 “~~~ Train : 0.78} * 7~~~ Train
’ +——— Train (Residual) +———= Train (Residual) e———= Train (Residual) '.‘I
055 T Test | 0.60ff *---=+ Test J 0.761 »---+ Test @
o+——— Test (Residual) +———= Test (Residual) ’ o———= Test (Residual) 3
o050 o 055¢ .
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Number of layers Number of layers Number of layers
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Summary

* Node embedding via language modeling tools

= Skip-gram
= DeepWalk

= Node2vec

* Node embedding via GCN

=  Semi-supervised classification

= Embedding via hidden layer outputs

Thiank you!
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