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Pattern recognition

C Choose a function from a class of functions which achieves a certain objective

« Often interested in min e r E[f(x)]

C Considerations

A {x; g\le Is drawn from an unknown pdf
A E[f(x)]is approxi mat ed blﬁl[f(ﬂ)]t:s]iv&(iggp“(bcii i cal wvalue
S ={x1,...,xn}

C Performance

A What conclusion can be made about E[f(x)] based on its empirical measure?




Concentration of a fixed function on a finite dataset

-
Question 1
How concentrated a fixed function of a finite dataset i (X1, ..., Xjs) € R is around its mean?

\_

Mc DI a r Imeiqualitys

4 Let X; € A denote independent random variables, and assume h: AY — R )
If SUDP,, andieA R, on) = B2y, Dy an)| <6, 05 <N
—2¢?
— Ve>0 Plr(h(xl7 woyxyr) — Elh(zy, .y xn)] > e) < exp(Nig)
\_ Dim1 6 )
Hoef f dlnegualgy s
4 )
If X,..., Xy are independent r.v. satisfying X; € [a;, b;], then for the r.v.
—2¢2
Sy:=Y1",X, ,wehave Ve>0 Pr(Sy—E[Sy]>¢)<
- /




Example: concentration of the sum of a finite dataset

- _ 1 .
A Example: consider Sy(xi,...,xn) = N Z?le@- = E[X] where z; € [a,1].

—92N¢2 )

SN (@1, 00 2N) = SN (@1, o By oy on)| < (b= @)/N =5 Pr(|B[X] ~ B[X]| > €) < 2exp ((b_a)g

A Example: consider the center of mass for the sample set S = {x1,...,xx}
1 N
Os 1= N D iy D(x)
U What can be concluded about its concentration?

Measure of accuracy ¢(S) := ||ps — E[¢(x)]||

« Canwe apply Mc Di a r Imeiquality® S = {x1,..., X, .0, XN }

9(S) = 9(S)] = llbs — Exlo()lll b5 — Exlo (Il < [[bs — bl = 1 l6(x:) — (i) <
_9ON¢2 _

Yes! —>  Pr(g(S)~Eslg(S) > ¢) <exp( jﬁf; ) (l6x)l < R)




Example: concentration of sample center of mass in feature space

A Furthermore

Es[g(S)] = Es[l|l¢s — Elp(x)][] = Es[[|¢s — Eslos]|l]
= Es[[Eslds — @5lll] < Esslllos — dsll]

S NEY iai(qs(xi) -~ $(x))

—E, s [% | iw@(xa — oip(%i))

] where o; € {+1} with equal probability
1

| = 205 [ 2 et
i=1

KEes] (oot Sesote) ]

< %(Eag [”Z_I aiajﬁ;(xi,xj)Dl/Q = %(Eas {ifﬂ(xi,xj)])lm < \2/—%
R _ —2N¢e?
A Previously, we had Pr(g(S) — Es[g(S)] = 6) < exp ( 1R? )
" —2N¢€?

A Setting § := exp (

) and after substitution, with probability at least 1 — § we have

9(S) < \/—RN(Q—F \/2111%)

4R?




Example: concentration of sample mean

A Sample mean of random draws of 2-dimensional Gaussian variables
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The empirical centre of mass based on a random sample
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. The empirical centre of mass based on a second random sample.
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independent variables (but not too much on any of them) is essentially constant.

Talagrand 1996.
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‘ Capacity of a class

A Let us go back to pattern recognition
A Find the function from a class of functions which achieves a certain objective

« Forinstance mingcr E[f(z,y)]

[Question 2: How concentrated is empirical mean of the sought pattern to its true mean?]

A Example

A Find a function f € Py that maps creditcardnumber s to the card

x_,[ Py := Set of polynomials of degree 10 ]

A Given 10 training pairs, 3f € P such that perfectly maps the training points!

A Performance on unseen data? Arbitrarily poor! —=>- overfitti@

(1) concentration of the function value

x Performan f ttern reli n . :
erformance ot a pattern relies o (2) Richness (capacity) of the class




Rademacher Complexity

A Measures the capacity of a class by its ability to fit random data

A Let {o1,...,0n} be independent uniform {41} -valued Rademacher r.v.

A Forset S = {xy,...,xy}, define Empirical Rademacher complexity of class F as

RN F) = [Sup‘ o; [ (x;)
(F) sup | Z

‘Xla--- N}

A Rademacher complexity of F

Ry (F) = Es[fin(F)] = s [ sup | Zo@f X,
€

]




Rademacher Complexity of kernel-based functions

A Consider the class of linear functions in a kernel defined feature space

F=Aflf :x— Zi\;l aik(xi,x),a Ka < B?}

A Consider the class Fp ={f|f :x = (w,d(x)), |[|W| < B} Regu|ariz@
/

~

If k:X xX —Risakernel,and S = {xy,...,xy} is a sample of points, then the

empirical Rademacher complexity of the class Fp satisfies

2B 2B
Ry (Fp) < \/Z% L R(Xi X)) = — N

tr(K)

o

Proof: Ry (Fg) = E,{ sup




Properties of Rademacher complexity

A Theorem: Let Fi,Fo, ..., F,, and G be classes of real functions. Then

a) If FC g then Ry (F) < Rn(G)

b) ARN(F) = Ry (convF)

c) Forevery ceR, Ry(cF) = |c|Rn(F)

d If A:R— R is L-Lipschitz and satisfies .A(0) =0, then Ry (AoF) < 2LRx(F)
d) For any function h, Ry (F + h) < Ry (F) + %/IW

e) Forany 1 <qg<oo,let Lrp,={lf—hl?feF} I ||f—hl|e<1

forevery f € F ,then Ryx(Lrp,) < Qq(RN(]-") +2\/IAE[h2]/N) :

N Rv(CiL, Fi) < 0%, B (F)

11



Concentration of a class of functions

/Fix §€(0,1),and let F:={f|f: X — [0, 1]}. Let {x;}¥ , be ind. drawn from\
distribution D . Then, w.p. atleast 1 — § over random draws of sample size N

In(2/9)
2N

S < BIF (0] + R (F) + 3 ) y
A Sketch of proof

For a fixed f: Ex[f(x)] < Ex[f(x)] 4 sup (Exh — Eh)
heF

Applying Mc Di_a r ineg.®n tise second term (why?), w.p. at least 1 — §/2

= 0) 25y (et

Ex[f(x)] < E[f(x)] + Es [222 (Exh —En)| + lng\/] )
J

Ex[f(x)] < E[f(x)] + Ry (F) +

VfeF

0/2 :=exp (—2Ne2)

Y

~ In(2
Can be shown: < RN(}‘) < RN(-F) +92 néj\/[(S)
I V2N e




Concentration of kernel-based SVM classifier

~

A Given a function g(x), a dataset S = {(x1,41)..... (x~,yn)}, @ desired margin ~y

A Define slack variable

&= (v —vi9(xi))+ = {7 —yig(x:) ¥ —wig(xi) >0

0 otherwise
/Theorem

Fix v>0,andlet F:={f[f(x,y) = —yg(x), 9(x) = (¢(x),w), [[W]s <1}.

Let {(xs,¥:)}  be ind. drawn from distribution D . Then, w.p. at least 1 —§

over ind. draws of sample size N we have

k P(y%sign(g(x))) < Nifyi::&—i_Ni'y\/tr(iK)‘F?) /lngéé)

/
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Sketch of proof

. A
1, if a>0; > L >0
A Define P(a)={1+a/y, if —y<a<O0; and%(a):{ e
. 0, otherwise
0, otherwise
A Since P(a) dominates H(a),we have
In(2/6)

< Ex[P(f(x,y)) — 1] + Re((P — 1)oF) + 3

2N

A (P —1)(a) is Lipschitz continuous with L =1/y and (P —1)(0) =0

Py # sign(9(x)) ) = Ex[H(£(x,))] < Ex[P(f(x,))+2R0(F) /143 1“5@
<&/ Rﬁ(g) ﬁ\/
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Algorithms

A Assume data is givenas S = {zy,...,zxy} where z; :=

A

>

Loss functions are usually of interest f(z) = ¢(g,z) where,e.g. g(x)=w'xCgG

(Xia yz)

Define Algorithm A : ZV — G that maps dataset § into a function As c G: X — Y

. I .~
€.g., AS = argmillgcg ﬁ Zi:l E(gv Zi) + )\”g”fzﬂ

Def il ne Ri s k R(Af,slj':gﬂgz[te(hs?z)r]]s
Remp(A,8) = Y, U(As, 2;) /N

REOO(A: 8) = Z;Nzl g(AS\iﬂ Z’&)/N

So far, we have studied )
]P’(SupfejT ’E[f] — E[f]’ > e)

Different approaches study

P(’R(A,S) _ Remp(A,S)’ > e)

while assuming a notion oA

_S | algorithm | As.

A

stability”

15



Algorithm stability
D1) Algorithm A has pointwise hypothesis stability Sy if

Vie {1,....N}, Es |:|€(A87Zi) — E(Asv,zz‘)@ < BN

D2) Algorithm A has hypothesis stability 3 if

Vi€ {1,.. N}, Es, [|(As,2) — (Asv.2)]| < B

D3) Algorithm A has uniform stability Gy if

VSe zZN Vie{l,...N}, max |l(As,z)—¥l(Ac, 2)| < By
S

zcsupp(D)

x Algorithm A is considered stable if 55 decreasesas1/N .

16



‘ Polynomial bounds with hypothesis stability

ﬂ'heorem \

For Algorithm A with hypothesis stability 5; and pointwise stability 3

w.r.t. a loss function 0 </¢(As,z) < M, w.p. atleast 1 — ¢ we have

12M N B,
ING

2
R(A,8) < Romp(A,S) + \/ M”+

and

6M N B,

\ R(A,S) < Ripo(A,S) + \/ " +2 NG /

17



‘ Exponential bounds with uniform stability

A Consider a regression task

/Theorem \

For Algorithm A with uniform stability 8 w.r.t. a loss function 0 < ¢(As,z) < M,

w.p. atleast 1 — ¢4 we have

n(1/3)

R(A,S) < Remp(A,S) + 28+ (ANB+ M) N

In(1/9)

2N /

R(A,S) < Ripo(A,8) + 8+ ANB + M)

k and

x The bound is tightif 8 scalesas 1/N.

x Specialized bounds for classification task is also available.

Question
Are commonly-used learning algorithms stable?

18



Uniform stability of regularized RKHS learning

A Consider the class of linear functions in a kernel defined feature space G

Definition: Loss function ¢(g,z) on G x ) is o-admissible w.r.t. (G if the associated
cost 4(g,z) = c(g(x),y) IS convex w.r.t. its first argument, and

Yyi1,y2 € D,VY € Y, |e(y1,y') — c(y2, ¥)| < olyr — yo
where D={y|dgeG,3xec X :g9(x) =y} .

/Theorem \

Assume for given kernel x(x,x) < k%2 < oo, and let loss ¢(g,z) be oc-admissible
g

w.r.t. G. Then the learning algorithm A defined by

_ 1
Ag = argmingeg N S g, zi) + Mlgll3,

. - 0'2.‘{2
Qas uniform stability g < N /

19




Examples on regularized RKHS learning

. . 1
x Regularized RKHS learning As = argmingeg ~ Y g z:) + Algll,

x Ex1) Bounded SVM regression

0 if [g(x) —y[ < e

lg(x) —y| — ¢ otherwise and Y =[0,B].

A Ug,2) =|9(x) —yle = {

2 2 2
. _ ] . K K 2K \/E In(1/4)
A l(g,2) is l-admissible = < To = R< Ramt i+ (S +0/ 3 )\ e

x Ex2) Regularized least squares

A Ug,z)=(9(x)—y)* and Y =10,B].

In(1/6)
2N

2 2 422 82B2
2B*k — R < Remy + K[ (H})\

s < NG + 23)

A ((g,z) is 2B-admissible = <

20



‘ Summary

~

A Concentration of a fixed function
U McDiarmid inequality
U Hoef f dneguality s

A Concentration of a class of functions

U Capacity and regularization
A Rademachar complexity

A Algorithm stability
A Generalization bounds
U Polynomial bounds

U Exponential bounds

A Regularized RKHS learning

Thank Yo
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