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 Concentration of a fixed function

 McDiarmid inequality

 Hoeffding’s inequality

 Stable algorithms

 Generalization bounds

 Polynomial bounds

 Exponential bounds

 Stability and generalization of regularized RKHS learning

 Concentration of a class of functions

 Capacity and regularization

 Rademacher complexity 

 Overview on pattern recognition
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 Choose a function from a class of functions which achieves a certain objective

• Often interested in

Pattern recognition

 is drawn from an unknown pdf

 is approximated by its empirical value                                       on a “training” set

 Considerations

 What conclusion can be made about                based on its empirical measure?

 Performance
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Concentration of a fixed function on a finite dataset

McDiarmid’s Inequality

Let  denote independent random variables, and assume

If

Hoeffdings’s Inequality

If are independent r.v. satisfying                     , then for the r.v.   

, we have

How concentrated a fixed function of a finite dataset                               is around its mean?

Question 1
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Example: concentration of the sum of a finite dataset

 Example: consider the center of mass for the sample set 

 What can be concluded about its concentration?

Measure of accuracy

 Example: consider                      where   .  

• Can we apply McDiarmid’s Inequality?

Yes!
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 Furthermore 

Example: concentration of sample center of mass in feature space

 Setting                                and after substitution, with probability at least            we have 

 Previously, we had

where                    with equal probability
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 Sample mean of random draws of 2-dimensional Gaussian variables

Example: concentration of sample mean

A random variable that depends (in a “smooth” way) on the influence of many 

independent variables (but not too much on any of them) is essentially constant.

Talagrand 1996.   
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Capacity of a class

 Let us go back to pattern recognition

Question 2: How concentrated is empirical mean of the sought pattern to its true mean?

 Find the function from a class of functions which achieves a certain objective

 Example

 Find a function               that maps creditcard numbers to the card holder’s phone number

Set of polynomials of degree 10

 Given 10 training pairs,                   such that perfectly maps the training points!

 Performance on unseen data? Arbitrarily poor!  overfitting! 

(1) concentration of the function value       

(2) Richness (capacity) of the class
 Performance of a pattern relies on 

• For instance
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Rademacher Complexity

 Measures the capacity of a class by its ability to fit random data

 For set                              , define Empirical Rademacher complexity of class       as    

 Let                        be independent uniform            -valued Rademacher r.v.

 Rademacher complexity of       
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 Consider the class of linear functions in a kernel defined feature space

Regularization!  Consider the class 

If                           is a kernel, and                            is a sample of points, then the 

empirical Rademacher complexity of the class         satisfies  

Proof: 

Rademacher Complexity of kernel-based functions
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Properties of Rademacher complexity

 Theorem: Let                             and        be classes of real functions. Then 

a) If               then                 

b)

c) For every              

d) If                     is    -Lipschitz and satisfies                 , then                 

d) For any function   

e) For any                    , let                                                  . If                   

f)

for every              , then .
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Concentration of a class of functions

 Sketch of proof 

Fix               , and let                                       . Let                 be ind. drawn from 

distribution      . Then, w.p. at least            over random draws of sample size      

Applying McDiarmid’s ineq. on the second term (why?), w.p. at least             

For a fixed f: 

w.p. at least 

Can be shown:
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Concentration of kernel-based SVM classifier

 Given a function        , a dataset                                       , a desired margin

 Define slack variable 

Theorem

Fix           , and let  .                                                      

Let                        be ind. drawn from distribution      . Then, w.p. at least            

over ind. draws of sample size        we have      
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 Define                                                                     and 

 Since             dominates              , we have

 is Lipschitz continuous with                      and            

Sketch of proof 



15

Algorithms

 So far, we have studied

 Different approaches study

 Loss functions are usually of interest

 Define “Risk” functions 

where, e.g. 

 Define Algorithm                        that maps dataset       into a function

 Assume data is given as                              where        

algorithm

while assuming a notion of “stability” for the algorithm     .

e.g.,



16

Algorithm stability

D2) Algorithm       has hypothesis stability        if 

D1) Algorithm       has pointwise hypothesis stability         if 

D3) Algorithm       has uniform stability         if 

 Algorithm       is considered stable if         decreases as        .
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Polynomial bounds with hypothesis stability

For Algorithm      with hypothesis stability         and pointwise stability         

w.r.t. a loss function                             ,  w.p. at least            we have

and

Theorem
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Exponential bounds with uniform stability

For Algorithm      with uniform stability     w.r.t. a loss function                           ,  

w.p. at least             we have

and

 Consider a regression task

 The bound is tight if       scales as          .  

 Specialized bounds for classification task is also available.

Question

Are commonly-used learning algorithms stable?

Theorem
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Uniform stability of regularized RKHS learning

 Consider the class of linear functions in a kernel defined feature space

Assume for given kernel                            , and let loss             be     -admissible 

w.r.t.     . Then the learning algorithm      defined by

has uniform stability                 .

Definition:  Loss function            on               is   -admissible w.r.t.        if the associated  

cost                             is convex w.r.t. its first argument, and

where                                                         . 

Theorem
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Examples on regularized RKHS learning

 Ex1) Bounded SVM regression

 Regularized RKHS learning

 is  1-admissible

 and                   .

 Ex2) Regularized least squares

 is       -admissible

 and                   .
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Summary

Thank You!

 Concentration of a fixed function

 McDiarmid inequality

 Hoeffding’s inequality

 Algorithm stability

 Generalization bounds

 Polynomial bounds

 Exponential bounds

 Regularized RKHS learning

 Concentration of a class of functions

 Capacity and regularization

 Rademachar complexity 


