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= Music, games ...

U 60% of data is reusable, a.k.a. contents

0 Heterogeneous network architecture (HetNet)

= Utilization of storage units at small base stations (SBs)
» Proactively store popular contents (cache)

= Challenge: what and when to store?

» Requires learning content popularities

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, "Wireless caching: technical misconceptions and busingss
barriers," IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.



Caching in wireless networks
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= Cache during off-peak hours
= Reduce load on backhauls during peak traffic periods
= Reduce cost for providing service with high QoS

O Generally unknown content popularity profiles

O Prior art

» Popularity profile learning [Blasco, Gunduz'15], [Bastug’,Debbah, Saad16], [Bharath’16]
= Multi-armed bandit (MAB) formulation [Belasco et al'14]
= Distributed and convexified MAB [Sengupta et al'14]

= Dynamic popularity profiles [Sadeghi et al'18] —  Unknown dynamic popularity profile
= Game-theoretic caching [Hamidouche, Debbah, Saad’16]

» Coded caching [Maddah-Ali, Usir'16], [Alizadeh, Avestimehr'16], [Amiri, Gunduz'17]

—— Unknown static popularity profile

Proposed approach
Caching via reinforcement learning while considering dynamic fetching-caching costs




Problem statement

Small base station mounted
_-on top of a street light

Backhaul link
Backbone }~ = T~

Storage unit
.

d Discrete-time network

Access point with storage to cache popular files

Total number of F contents at the back-bone

User content requests are served using

v Proactively cached contents, or

v Reactively fetched (via back-haul link) contents

O Pertinent costs for provisioning a request

Storing locally in access point: processing, storage and energy consumption

Fetching from cloud: scheduling, routing, transmission through expensive back-haul

Minimize sum-average cost by sequentially making fetching-caching decisions




Content-dependent variable costs

O File- and size-dependent caching-fetching costs

size dep. file dep.
"4 Mg ~
= Cost of caching file f at slot t cf =or(dt + c’f) + (" + c”tf)
= Cost of fetching file f at slot t o =0 o'y + cb’f) + (9" + Cb"{)

0 Base-station receives user file request for file f at slot t (frf =1)
= Fetching-action variable w;f € {0,1}

= Caching-action variable al €{0,1}

[Goal: Given pdf of iid {rf,cf,¢f}”" . and instantaneous values per slot t, find {w/*,af*}>2, ]




Fetch and cache via dynamic programing

QO Cache-state variable s] €{0,1} where sl =al_,

W Constraints on fetch-cache decision variables {wT, T}T " a1

» File requests must be served (no drop-off allowed) f < wf + s{, Vf,t
= Caching is feasible iff file is available al <si+w!, Vit
0O Fetch-cache cost Cl(af,wlscl, 0]) =clal + ¢lw]
4 )
min  Co= 3 B[O w6
{(wr,azr)} s r>t T=t f=1
s.t. (wl,al) e x(rl, sh), Vf, r>t
- /

X(rf,s{) = {(w,a) |w,a € {0,1},s; —azic 15 7{<w+s{, a§s{+w}

U Optimization separable across files!
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‘ Formulating per content optimization

Q Given (s!,r!, ¢!, o))
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= argmin o (a,wiel, o) + E
(w,a)eX (r],s) ricl ofir>t

O Marginalized value function

= min

frafy .
Vi) (w,a)E€X (17 ,s7)
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{Cl(a,w; e, ¢7) +7Vf(a)}]




Value iteration algorithm

0 Value iteration algorithm to find V7 (s)

= |nput: probability density functions of cf, ¢! and r/
= |nitialize: T_/Of(s) =0, for s € {0,1}
= While |V{(s) = V() <& Vfs€{01}

ka+1(3) =K, s of o (w G)Iélj(f%ﬁ 9 {Of(avw; !, pf) + ’)/‘_ﬁ;f(a)} for s=0,1

= OQutput: V/(0),V/(1)

O Optimal cache-fetch decisions given (sf, frtf, cf, cbf)

(wl* af*) = avgmin {7 (a,wie] ) + VI (@)}
(w,a)€X (r],s])

O Under iid assumption, marginalized value function takes binary input

—  Fast convergence!




Numerical test with dynamic cost

= Perfile f pdfs el ~1(0,20), ¢ ~u(0,24), rl ~ Bernoulli (pf)
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v For fixed ¢, up to a certain value of ¢ , caching is encouraged
v’ Large p, encourages caching for a larger range of ¢

v Increased cost with more requests p;-




Further comparisons

« o ~U(0,2¢), ¢ ~U(0,2¢), ! ~ Bernoulli (pf)

: . .__ No. of caching decisions v' DP vs. myopic caching
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/\/ Low ¢ ,high ¢ —— cachingratio=1 (flat area) )
v Highe ,low ¢ —— caching ratio = 0
v Intermediate values —— O< caching ratio <1

Q/ DP considers future, thus reaches smaller average cost versus myopic caching /
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Future research and stakeholder analysis

O Multi-file caching considering queuing and cache refreshing costs

 Cooperative caching across neighboring small cells

O Cross-layer design of coded caching

O Privacy-preserving, secure, space-time variable caching

Thank you!
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