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 Heterogeneous network architecture (HetNet)

 60% of data is reusable, a.k.a. contents

 Utilization of storage units at small base stations (SBs)

 Challenge: what and when to cache?

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, "Wireless caching: technical misconceptions and business 

barriers," IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016.

 8-fold growth of global mobile data traffic between 2015 and 2020
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 Access technologies in heterogeneous subnets

Evolution of wireless networks



Caching in wireless networks

 Generally unknown content popularity profiles

 Multi-armed bandit (MAB) formulation [D. Belasco et al’14]

Unknown static popularity profile
 Distributed and convexified MAB [A. Sengupta et al’14]

 Dynamic user demand [Kim et al’17] Unknown dynamic popularity profile

 Prior art

Proposed approach

 Caching via reinforcement learning over files with spatio-temporally dynamic popularities
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 Reduce cost for providing service with high QoS

 Memory-enabled SBs

 Reduce load on backhauls during peak traffic periods

 Cache during off-peak hours
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System model

 Total number of      contents w/ unit size in backbone

Goal: Given and observed costs, optimize policy

 Discrete-time network

Markov dynamics Markov dynamics

 Local popularity profile                  

 Action vector                        : SB caches        content if 

 State vector

 Storage capacity of        files in SBs

 SB with caching control unit (CCU)

 Policy            is a mapping from state space to action space   

 Global popularity profiles 
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Problem formulation

 Costs 

 Refreshing the cached contents 

 Fetching requested non-cached files

 Tracking global popularities

 Goal: Find the optimal policy

 Viable approaches

 Expected discounted cost

 Adaptive dynamic programming 

 Q-learning

 SARSA

 Recall
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 Bellman equation

 Q-learning

Reinforcement learning (RL)

 Optimality

 State-action value function

 Objective

 Find optimal policy          such that             is maximized for all states   

 State value function (under policy     )

 Immediate reward + discounted future rewards

 Reward: scalar feedback, how well agent is doing

 State: mathematical representation of environment

 Agent-environment interactions

 Action: decision made by the agent
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Q-learning for proactive caching

Observations are revealed

Exploration-exploitation tradeoff

Stochastic update of Q-table

 Convergence

 If 

then policy will converge to the optimal policy , i.e.,                  w.p. 1.  

1. All state-action pairs are continuously visited,

2. Step-size        satisfies                            and 
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Simulation tests

 Two-state Markov chain for modeling  

 State transition probabilities 

 Similarly for           with

 Consider a total of F=10, and M=3

 and   

Thank you!


