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Evolution of wireless networks

O 8-fold growth of global mobile data traffic between 2015 and 2020
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0 Heterogeneous network architecture (HetNet)

= Access technologies in heterogeneous subnets

O 60% of data is reusable, a.k.a. contents

= Utilization of storage units at small base stations (SBs)

» Challenge: what and when to cache?

G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, "Wireless caching: technical misconceptions and business
barriers," IEEE Communications Magazine, vol. 54, no. 8, pp. 16-22, August 2016. 2



Caching in wireless networks
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Small base station mounted
,-on top of a street light

Storage unit

= Cache during off-peak hours
= Reduce load on backhauls during peak traffic periods

= Reduce cost for providing service with high QoS

O Generally unknown content popularity profiles

O Prior art

» Multi-armed bandit (MAB) formulation [D. Belasco et al'14]

» Distributed and convexified MAB [A. Sengupta et al'14] = Unknown static popularity profile

= Dynamic user demand [Kim et al'17] —— Unknown dynamic popularity profile

Proposed approach
v' Caching via reinforcement learning over files with spatio-temporally dynamic popularities




System model

P p ) CCU agent i |
. . \ N I
L Discrete-time network ‘ /a[z‘+1] : :
: i |
e S B |
| i

= SB with caching control unit (CCU)

\

= Total number of F contents w/ unit size in backbone ¢ : £41

!

= Storage capacity of M filesin SBs a[t] aft+1]
= Local popularity profile [pL [f]] _ #Tof local requests for file f at. tlm.e interval ¢
f otal # of local requests at time interval ¢

= Global popularity profiles P [t]

= Action vector a[t] € {0,1}": SB caches £ contentif ay [t] =1

= Statevector  s[t] := [pl [t],pT [t],al [t]] !

=  Policy 77() is a mapping from state space to action space = aft+ 1] = n(s[t])
[ Goal: Given {S[T]}Zg and observed costs, optimize policy (.) ]




Problem formulation
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Costs a[l] at+1]

= Refreshing the cached contents h(alt],at—1]) = \a'[t](1 —aft —1])
= Fetching requested non-cached files g (s[t]) := X2(1 —aft]) "pr[t]

= Tracking global popularities f(s[t]) := A3(1 — a[t]) "pg[t]

—  C(s[t—1],alt]|pclt],pult]) := h(alt],alt —1]) + g (s[t]) + f(s[t])

T
Expected discounted cost V. (s[r]) = T‘li—l>1-1 E Z AVTTC (st] .7 (s [t]))
t=r1
Goal: Find the optimal policy T = arg mi}} Vi (so)
me

Viable approaches

v Adaptive dynamic programming
v' Q-learning
v SARSA




Reinforcement learning (RL)

O Agent-environment interactions

. . . state
= State: mathematical representation of environment s,

= Action: decision made by the agent
» Reward: scalar feedback, how well agent is doing

O State value function (under policy 7)

= |Immediate reward + discounted future rewards

O Obijective
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"| Agent |

.. | Environment ]4—

v" Find optimal policy 7w (-) such that V,(s) is maximized for all states

Q Bellman equation V. (s) =E[C (s,7(s))] +7 Z T(s';s,m(s))Vx (s) ,Vs,s. g

s'eS
O Q-learning
= State-action value function Q" (s,a) :=E[C (s,a))] + v Z T(s';s,a)V7™ (s)
s'eS
O Optimality )

7*(s) = argmin Q*(s,a), Vse S,

action
A

evaluation
V-v"

si—>greedy(V)

improvement
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Q-learning for proactive caching el el
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Algorithm 1: Proactive-caching via (J-learning at CCU

Initialize s[0] randomly and Q(s,a) = 0 Vs,a

[y

2 for i=1,2,... do
3 Take action a[t] chosen probabilistically by
argminO (st —1].a) wp. 1—c Exploration-exploitation tradeoff
alt] = a
random a € A wW.p. €
4 pr [t] and pg [t] are revealed
5 | Sets[t]=[pLlt],pclt],alt] Observations are revealed
6 Incur cost C (s[t — 1], alt] |palt], pr[t])
7 Update
Qi(sft—1],alt]) & (1= B)Qe1 (s[t—1],a +ﬁt
o [C (s[t—1],a[t] pclt], pLlt]) + Y min 041 ( Stochastic update of Q-table

0 Convergence

v If 1. All state-action pairs are continuously visited,
2. Step-size [, satisfies Zf&il Bi =00 and ..o, B% < oo

then policy will converge to the optimal policy , i.e., @ — 7" w.p. 1.




‘ Simulation tests

O Consider a total of F=10, and M=3

» Two-state Markov chain for modeling pr [¢]
= State transition probabilities 7 := [ 832 3;23 J
= Similarly for pc [t with = [ v &45]

. Bt =03 and =006

Q-learning Vs. optimal offline policy
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